2021中儲糧(國企)招聘備考資料—數量關系
        2020-12-23
        文章來源:科信教育

          中儲糧(國企)招聘筆試考什么?科信為您提供免費中儲糧(國企)備考資料!

        知識點_、數學運算之和定最值
        ※問題描述
        多個數的和一定,求其中某個數的最大值或最小值。
        ※解題原則
        采用逆向求值的思想,若要求最大值,則讓其他量盡可能地;求最小值,則讓其他量盡 可能地大。如:甲、乙兩人的年齡是互不相同的正整數,和為 50 歲,且甲比乙大,求甲的年齡最大為多 少歲? 最小為多少歲? 要使甲的年齡最大,則乙的年齡應盡可能小,最小為]歲,則甲的年齡最大為 50-1=49 歲; 要使甲的年齡最小,乙的年齡應盡可能大,則甲、乙兩人的年齡盡可能接近,甲、乙年齡分別 為 26 和 24 時,滿足題意,所以甲的年齡最小為 26 歲。
        【例】5 名學生參加某學科競賽,共得 91 分,已知每人得分各不相同,且最高是 21 分, 則最低分最低是:
        A.14
        B.16
        C.13
        D.15
        【答案】C。解析:要想最低分最低,則其他 4 人成績盡可能高,且每人得分各不相同, 所以其他 3 人分數分別為 20、19、18o故最低分至少為 91 -(21+20+19+18)=13。
        知識點二、數學運算之多者合作
        ※問題描述
        多者合作指在一項工程實施過程中有多人參與合作的情況。合作方式有幾人同時工作,幾人不同時工作,或二者混合。
        ※解題核心
        合作時的總效率等于各部分效率之和。
        ※解題方法
        特值法。已知時間,可設工作量為幾個時間的公倍數,進而求效率;已知效率之間的比例 關系,可直接設效率的最簡比為特值。
        【例】若將一項工程的 1/6、1/4、1/3 和 1/4 依次分配給甲、乙、丙、丁四家工程隊,分別需 要 15 天、15 天、30 天和 9 天完成,則他們合作完成該工程需要的時間是:
        A.12 天
        B.15 天
        C.18 天
        D.20 天
        【答案】B。解析:由題干可知,甲、乙、丙、丁四個工程隊單獨完成分別需要 15÷1/6=90 天、 15÷1/4=60 天、30÷1/3=90 天、9÷1/4=36 天。設總工作量為 180,則它們的效率分別為 2、3、2、5, 效率之和為 12,合作需要 180-12=15 天,選擇 B。 
        【本站文章系網絡轉載,科信不對其真實性負責,如涉及內容、版權和其它問題,麻煩聯系我們,我們會立即刪除】
        ★ 編輯:wii
        国产高清国内精品福利99久久|精品亚洲日韩国产一二三区|制服丝袜美腿一区二区|C亚洲精品综合第一国产综合 一级免费在线无吗视频毛片|91精品国产91久久久久|久久久无码精品亚洲|久久久久无码精品亚洲 越猛烈欧美xx00动态图